首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   61篇
  国内免费   17篇
化学   203篇
力学   10篇
综合类   6篇
数学   13篇
物理学   89篇
  2024年   2篇
  2023年   5篇
  2022年   5篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   6篇
  2017年   3篇
  2016年   20篇
  2015年   8篇
  2014年   6篇
  2013年   13篇
  2012年   10篇
  2011年   12篇
  2010年   16篇
  2009年   13篇
  2008年   13篇
  2007年   16篇
  2006年   16篇
  2005年   26篇
  2004年   9篇
  2003年   34篇
  2002年   16篇
  2001年   11篇
  2000年   12篇
  1999年   5篇
  1997年   2篇
  1996年   3篇
  1995年   7篇
  1994年   7篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
  1982年   3篇
排序方式: 共有321条查询结果,搜索用时 218 毫秒
41.
42.
43.
A novel method is firstly presented for field and rapid analysis of short-chain aliphatic amines in water as their pentafluorobenzaldehyde (PFBAY) derivative using solid-phase microextraction (SPME) and portable GC. In the proposed method, short-chain aliphatic amines in water rapidly reacted with PFBAY, and then were headspace extracted and concentrated by SPME. The formed amines derivatives were analyzed by portable GC. The SPME parameters of fiber selection, extraction temperature, extraction time, and stirring rate were studied. The method validations including LOD, recovery, precision, and linearity were studied. It was found that the proposed method required the whole analysis time 22 min, and provided low LOD of 1.2-4.6 ng/mL, good recovery of 91-106%, good precision of RSD value 3.5-9.3%, and linear range 20.0-500 ng/mL (r(2) >0.99). The obtained results demonstrated that the SPME-portable GC is a simple, rapid, and efficient method for the field analysis of short-chain aliphatic amines. Finally, the proposed method was further applied to the quantification of ethylamine, propylamine, and butylamine in environmental water.  相似文献   
44.
A novel approach is proposed to synthesize Fe(3)O(4)@TiO(2) microspheres with a well-defined core-shell structure, and the synthesized Fe(3)O(4)@TiO(2) core-shell microspheres were successfully applied for the simple and fast enrichment of phosphopeptides via direct MALDI-TOF mass spectrometry analysis.  相似文献   
45.
An in‐capillary 2, 2‐diphenyl‐1‐picrylhydrazyl (DPPH)‐CE‐the DAD (in‐capillary DPPH‐CE‐DAD) combined with reversed‐electrode polarity stacking mode has been developed to screen and quantify the active antioxidant components of Cuscuta chinensis Lam. The operation parameters were optimized with regard to the pH and concentration of buffer solution, SDS, β‐CDs, organic modifier, as well as separation voltage and temperature. Six antioxidants including chlorogenic acid, p‐coumaric acid, rutin, hyperin, isoquercitrin, and astragalin were screened and the total antioxidant activity of the complex matrix was successfully evaluated based on the decreased peak area of DPPH by the established DPPH‐CE‐DAD method. Sensitivity was enhanced under reversed‐electrode polarity stacking mode and 10‐ to 31‐fold of magnitude improvement in detection sensitivity for each analyte was attained. The results demonstrated that the newly established in‐capillary DPPH‐CE‐DAD method combined with reversed‐electrode polarity stacking mode could integrate sample concentration, the oxidizing reaction, separation, and detection into one capillary to fully automate the system. It was considered a suitable technique for the separation, screening, and determination of trace antioxidants in natural products.  相似文献   
46.
47.
A two-dimensional capillary array liquid chromatography system coupled with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was developed for high-throughput comprehensive proteomic analysis, in which one strong cation-exchange (SCX) capillary chromatographic column was used as the first separation dimension and 10 parallel reversed-phase liquid chromatographic (RPLC) capillary columns were used as the second separation dimension. A novel multi-channel interface was designed and fabricated for on-line coupling of the SCX to RPLC column array system. Besides the high resolution based on the combination of SCX and RPLC separation, the developed new system provided the most rapid two-dimensional liquid chromatography (2D-LC) separation. Ten three-way micro-splitter valves used as stop-and-flow switches in transferring SCX fractions onto RPLC columns. In addition, the three-way valves also acted as mixing chambers of RPLC effluent with matrix. The system enables on-line mixing of the LC array effluents with matrix solution during the elution and directly depositing the analyte/matrix mixtures on MALDI plates from the tenplexed channels in parallel through an array of capillary tips. With the novel system, thousands of peptides were well separated and deposited on MALDI plates only in 150min for a complex proteome sample. Compared with common 2D-LC system, the parallel 2D-LC system showed about 10-times faster analytical procedure. In combination with a high throughput tandem time of flight mass spectrometry, the system was proven to be very effective for proteome analysis by analyzing a complicated sample, soluble proteins extracted from a liver cancer tissue, in which over 1202 proteins were identified.  相似文献   
48.
In this work, for the first time, microwave distillation (MD) coupled with simultaneous headspace single-drop microextraction (HS-SDME) was developed for the determination of the volatile components in the Chinese herb, Artemisia capillaris Thunb. The volatile components were rapidly isolated by MD, and simultaneously extracted and concentrated by using a dodecane microdrop. The volatile oil extracted in the microdrop solvent was analyzed by gas chromatography-mass spectrometry (GC-MS). The experimental parameters of solvent selection, microdrop volume, microwave power, irradiation time and sample amount were investigated, and the method precision was also studied. The optimal parameters were extraction solvent of dodecane, solvent volume of 2.0 microL, microwave power of 400 W, irradiation time of 4 min, and sample amount of 2.0 g. Thirty-five volatile compounds present in Artemisia capillaris Thunb. were identified by using the proposed method, which were identical with those obtained by the conventional steam distillation method. The experimental results showed that MD-HS-SDME is a simple, rapid, reliable, and solvent-free technique for the determination of volatile compounds in Chinese herbs.  相似文献   
49.
利用光子的闭合轨道理论,我们研究了原子在两个平行镜面间两层电介质板(折射率分别为n1,n2)中的自发辐射率. 自发辐射率呈现出多周期的振荡结构。自发辐射率的傅立叶变换中的每一个峰和光子从原子出发到返回原子的一条闭合轨道相对应。结果表明自发辐射率和两层电介质的宽度和折射率有关。和只有一层电介质的辐射率比较,当两层电介质的折射率n1 和 n2 差别很小时, 两层电介质之间分界面的反射效应可以忽略;但是当二者的差别很大时,发射效应变得非常重要且自发辐射率中的振荡减弱。本文的结果为原子在不同电介质间的自发辐射率的研究提供了新的理解。  相似文献   
50.
Protein phosphorylation is one of the most important post-translational modifications. Due to the dynamic nature and low stoichiometry of the protein phosphorylation, enrichment of phosphopeptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Many metal oxides such as titanium dioxide and zirconium dioxide have been successfully applied to isolation and enrichment of phosphopeptides. Recently, niobium pentoxide was proved to have the ability for selective enrichment of phosphopeptides. Considering the proximity of tantalum to niobium, we supposed that Ta2O5 can be used as affinity probes for phosphopeptide enrichment. In the work, we synthesized Fe3O4@Ta2O5 magnetic microspheres with core–shell structure for selective enrichment of phosphopeptides. To demonstrate its ability for selective enrichment of phosphopeptides, we applied Fe3O4@Ta2O5 magnetic microspheres to isolation and enrichment of the phosphopeptides from tryptic digestion of standard proteins and real samples, and then the enriched peptides were analyzed by matrix-assisted laser desorption mass spectrometry analysis (MALDI-MS) or liquid chromatography coupled to electrospray ionization mass spectrometry (LC–ESI-MS). Experiment results demonstrate that Ta2O5 coated-magnetic microspheres show the excellent potential for selective enrichment of phosphopeptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号